Forests and Carbon Management

- Forests capture and store carbon dioxide through photosynthesis and plant growth.
- Climate change stressors like droughts, fires, and disease decrease forests’ carbon-absorbing capacity. Without intervention, forests in the United States may capture a third less carbon by 2050.
- Targeted forest management can increase the CO$_2$ storage capacity of forests while maintaining other critical services like providing habitat for biodiversity, cleaning air and water, and providing fuel and fiber products for humans.

“Forests are a critical part of our nation’s carbon budget. [They] are living carbon capture machines that remove carbon dioxide from the atmosphere and store that carbon in a long-lived, ecologically active pool.”

Dr. Sara Kuebbing
Lead Author, Forest Management
Yale School of the Environment

Roads to Removal uses three case studies to explore the potential for increasing CO$_2$ removal in forests in the United States:

Western US
Fire-resilience forest management of ~1.2 million acres of dry forests near human settlements in the West could reduce wildfire risk, abating up to 16 million metric tonnes of CO$_2$-equivalent between 2025-2050 while helping protect homes, communities, and habitats.

Southern New England
Sustainable harvest and regeneration-focused forest management of ~6.4 million acres of hardwood forests in southern New England could abate up to 68 million metric tonnes of CO$_2$-equivalent between 2025-2050, and reduce forest susceptibility to drought, wind, pests, and disease.

Southeast US
Planting 5.2 million acres of new pine forests in the Southeast could remove 1.5 to 1.8 billion metric tonnes of CO$_2$-equivalent from the atmosphere between 2025-2050, while potentially providing a source of revenue to landowners.

Every region has a story. Every region has an opportunity. To learn more about each carbon dioxide removal pathway, go to Roads2Removal.org